Page 25

janfeb13

Synchrotron radiation Eom, P.G. Evans, and E.M. Dufresne, “InD.-H. Do, A. Grigoriev, D.M. Kim, C.-B.12 Third-generation X-ray sources from synchrotron light sources, such as the Advanced Photon Source Situ X-ray Probes for Piezoelectricity in at Argonne National Laboratory (Argonne, Ill.), generate X-rays with very high intensity and small Epitaxial Ferroelectric Capacitors,” Integr. angular divergence, termed "brilliance." This brilliance, in turn, allows X-rays to focus to very small Ferroelectr., 101, 174 (2009). spot sizes, on the order of 100 nm or smaller. This spatial resolution is comparable to scanning 13R.J. Sichel, A. Grigoriev, D.-H. Do, S.-H. probe microscopy and makes the study of the functional properties of highly heterogeneous materi- Baek, H.-W. Jang, C.M. Folkman, C.-B. als possible. Eom, Z. Cai, and P.G. Evans, “Anisotropic X-ray wavelengths are selected to match the needs of the experiment. Wavelengths of ~1 Å, which Relaxation and Crystallographic Tilt in are required for diffractometry experiments, easily penetrate the top electrodes of device structures, BiFeO3 on Miscut SrTiO3 (001),” Appl. such as capacitors, which allows in situ studies to be performed in applied electric fields. Even with Phys. Lett., 96, 051901 (2010). the angular convergence introduced by focusing, synchrotron X-ray diffractometry experiments have 14R.J. Sichel-Tissot, “Structural and sufficient precision to observe piezoelectric strains on the order of 10–5. In these studies of piezo- Electromechanical Properties of Epitaxial electricity, the thin-film capacitor is positioned at the focus of the X-ray beam and the diffractometry BiFeO Thin Films,” PhD Thesis, University experiment is conducted in an electric field provided by a probe tip contacting the top electrode. 3 of Wisconsin–Madison, 2011. 15A. Grigoriev, R. Sichel, H.-N. Lee, E.C. Landahl, B. Adams, E.M. Dufresne, and P.G. Evans, “Nonlinear Piezoelectricity in Epitaxial Ferroelectrics at High Electric Fields,” Phys. Rev. Lett., 100, 027604 (2008). 16R.J. Zeches, M.D. Rossell, J.X. Zhang, A.Hatt, Q. He, C.H. Yang, A. Kumar, C.H. Wang, A. Melville, C. Adamo, G. Sheng, Y.H. Chu, J.F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L.Q. Chen, D.G. Schlom, N. A. Spaldin, L.W. Martin, R. Ramesh, (Credits: (a) Alexei Grigoriev, Univeristy of Tulsa; (b) Chen et al.; IOP. Reprinted with permission.) (a) Photograph and (b) schematic of in situ synchrotron X-ray diffractometry studies “A Strain-Driven Morphotropic Phase of piezoelectric materials. The sample shown schematically in (b) is a heteroepitaxial Boundary in BiFeO3,” Science, 326, 977 superlattice consisting of alternating layers of BaTiO3 and CaTiO3.20 (2009). 17P. Zubko, N. Stucki, C. Lichtensteiger, and Bull., 71, 85 (1992). 8J. Wooldridge, S. Ryding, S. Brown, T.L. J.-M. Triscone, “X-ray Diffraction Studies 2J. Zhang, “Ferroelectric Thin Films,” Am. Burnett, M.G. Cain, R. Cernik, R. Hino, M. of 180° Ferroelectric Domains in PbTiO3/ Ceram. Soc. Bull., 89, 33 (2010). Stewart, and P. Thompson, “Simultaneous SrTiO3 Superlattices under an Applied Measurement of X-ray Diffraction and Electric Field,” Phys. Rev. Lett., 104, 3S.V. Kalinin, E. Karapetian, and M. Ferroelectric Polarization Data as a Function 187601 (2010). Kachanov, “Nanoelectromechanics of of Applied Electric Field and Frequency,” J. 18J.Y. Jo, P. Chen, R.J. Sichel, S.J. Callori, Piezoresponse Force Microscopy,” Phys. Rev. Synchrotron Rad., 19, 710 (2012). J. Sinsheimer, E.M. Dufresne, M. Dawber, B, 70, 184101 (2004). 9E. Zolotoyabko, J.P. Quintana, B.H. and P.G. Evans, “Nanosecond Dynamics of 4J.F. Shepard, P.H. Moses, and S. Trolier- Hoerman, and B.W. Wessels, “Fast Time- Ferroelectric/Dielectric Superlattices,” Phys. McKinstry, “The Wafer Flexure Technique Resolved X-ray Diffraction in BaTiO Films Rev. Lett., 107, 055501 (2011). for the Determination of the Transverse Subjected to a Strong High-Frequency 19P. Chen, J. Y. Jo, H. N. Lee, E. M.3 Piezoelectric Coefficient d31 of PZT Thin Electric Field,” Appl. Phys. Lett., 80, 3159 Dufresne, S. M. Nakhmanson, and P. Films,” Sens. Actuators A, 71, 133 (1998). (2002). G. Evans, “Domain- and Symmetry- 5I. Kanno, S. Fujii, T. Kamada, and R. 10J.Y. Jo, P. Chen, R.J. Sichel, S.-H. Transition Origins of Reduced Nanosecond Takayama, “Piezoelectric Characteristics of Baek, R.T. Smith, N. Balke, S.V. Piezoelectricity in Ferroelectric/Dielectric c-Axis Oriented Pb(Zr,Ti)O3 Thin Films,” Kalinin, M.V. Holt, J. Maser, K. Evans- Superlattices,” New J. Phys. 14, 013034 Appl. Phys. Lett., 70, 1378 (1997). Lutterodt, C.-B. Eom, and P.G. Evans, (2012). 6A. Grigoriev, D.-H. Do, D.M. Kim, C.-B. “Structural Consequences of Ferroelectric 20J.F. Nye, Physical Properties of Crystals, Eom, B. Adams, E.M. Dufresne, and Nanolithography,” Nano Lett., 11, 3080 Oxford University Press, London, 1985. n P.G. Evans, “Nanosecond Domain Wall (2011). Dynamics in Ferroelectric Pb(Zr,Ti)O3 Thin 11P. Chen, R.J. Sichel-Tissot, J.Y. Jo, R.T. Films,” Phys. Rev. Lett., 96, 187601 (2006). Smith, S.-H. Baek, W. Saenrang, C.-B. 7J.L. Jones, M. Hoffman, J.E. Daniels, A.J. Eom, O. Sakata, E.M. Dufresne, and P.G. Studer, “Direct Measurement of the Domain Evans, “Nonlinearity in the High-Electric Switching Contribution to the Dynamic Field Piezoelectricity of Epitaxial BiFeO3 Piezoelectric Response in Ferroelectric on SrTiO3,” Appl. Phys. Lett., 100, 062906 Ceramics,” Appl. Phys. Lett., 89, 092901 (2012). (2006). American Ceramic Society Bulletin, Vol. 92, No. 1 | www.ceramics.org 23


janfeb13
To see the actual publication please follow the link above